Pre-clage Warm-up!!!

Question: True or False, for vectors

v.1,...,v.6 in RAn?
a. If v_1,...,v_6 arelinearly
independentthenv_1, ..., v_4 are

necessarily linearly independent.

b. If v_1,...,v_4 arelin. indep. then
v_1, ..., v_6 are necessarily lin.
indep.

c. If v_1,...,v_6 span RAn then
v_1,...,v_4 necessarily span RAn.

d. If v_1,...,v_4 span RAn then
v_1, ..., v_6 necessarily span RAn.

True False
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Section 4.4: Bases and dimension

We learn:

e The meaning of the word basis, and a broader
definition of the word dimension.

e Theorem: Any two bases for a vector space
have the same size.

e Theorem: A basis is a maximal independent set,
and also a minimal spanning set.

e How to find a basis for various vector spaces:
the solution set to a homogeneous system of
equations, lines and planes in RA3.




Definition on page 235:

A set of vectors S={v_1, ... ,v_k} is a basis
for a vector space V if and only if

a. the vectors are independent, and

b. they span V.

Example. (1,0,-1), (1,2,-2), (1,6, -3)
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Example: the standard basis for RA3 5
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Like question 12 - 14:
Find a basis for the plane in RA3 with equation

2x-y+3z=0.
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Do these vectors span, and are they independent?
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Like questions 15 - 26:
Find a basis for the solution space of the system

W+2x+3y+4z=0
2W+4x+ 7y + 9z =0
3w+ 6x+9y +12z2=0



Question: determine whether the vectors
(1,0, -1), (1,2,-2), (1,6,-3) form a

1

basis for RA3.
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Further question:
a. Does the vector (1,6,-3) lie in the span of
the vectors (1, 0, -1) and (1, 2, -2)?

Yes No /

b. Does the vector (1,2,-2) lie in the span of
the vectors (1,0, -1) and (1, 6 -3)?

Yes No /



Theorem 1: If {v_1, ... ,v_n} is a basis for V
then any set of vectors w_1, ... ,w_r with r>n
is dependent.
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Theorem 2: Any two bases for a vector space
have the same size.
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Definition. The dimension of a vector space is
the size of a basis.



What about:

Theorem

Let S be asetof n vectorsin RAn.

If S islinearly independent then S spans V
and hence is a basis for V. Y
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Question: have we already proved the
following theorem?:

Theorem
Let V be a vector space of dimension n and
let S be asetof n vectorsin V.

If S is linearly independent then S spans V
and hence is a basis for V.




Theorem 3 (second 1/2 of it)
(c) If S isasetof linearly independent vectors in
a vector space V then S is contained in a basis

for V. § can be addended  a Zawv(ﬂfif\/ :

(d) If S is a set of vectors that spans V then S
contains a basis for V.

(c) is in the homework (questions 29 and 30).
(d) is questions 31 and 32.
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Theorem 3 (first 1/2 of it)

Let V be a vector space of dimension n and
let S be aset of n vectorsin V.

(@) If S islinearly independent then S is a
basis for V.

(b) If S spans V then S is a basis for V.
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Example (like example 4):

Let V be the set of polynomials
a, + Ax + a,x* 4+ a,x

(@) Show that V has dimension 4.
(b) Show that 1, T+x, x+xA2, xA\2+x/3 is a
basis for V




